WO09853410

Publication Title:

A METHOD AND SYSTEM FOR DISTRIBUTED CACHING, PREFETCHING
AND REPLICATION

Abstract:
Abstract of W0O9853410

A technique for automatic, transparent, distributed, scalable and robust caching,
prefetching, and replication in a computer network that request messages for a
particular document follow paths from the clients to a home server that form a
routing graph. Client request messages are routed up the graph towards the
home server as would normally occur in the absence of caching. However, cache
servers are located along the route, and may intercept requests if they can be
serviced. In order to be able to service requests in this manner without departing
from standard network protocols, the cache server needs to be able to insert a
packet filter into the router associated with it, and needs also to proxy for the
homer server from the perspective of the client. Cache servers may cooperate to
service client requests by caching and discarding documents based on its local
load, the load on its neighboring caches, attached communication path load, and
on document popularity. The cache servers can also implement security
schemes and other document transformation features.

Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

This Patent PDF Generated by Patent Felcher(R), a service of Stroke of Color, Inc.

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 (11) International Publication Number: WO 98/53410
GOGF 17/30 A2) o

(43) International Publication Date: 26 November 1998 (26.11.98)

(21) International Application Number: PCT/US98/09943 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

-BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,

(22) International Filing Date: 15 May 1998 (15.05.98) GH, GM, GW, HU, ID, IL, IS, JIP, KE, KG, KP, KR, KZ,

LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,

MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S, SK, SL, TJ,

(30) Priority Data: TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
08/861,934 22 May 1997 (22.05.97) UsS (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent

(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent

(AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT,

(71) Applicant: TRUSTEES OF BOSTON UNIVERSITY [US/US]; LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
147 Bay State Road, Boston, MA 02215 (US). CM, GA, GN, ML, MR, NE, SN, TD, TG).

(72) Inventors: MIRDAD, Sulaiman, A.; Apartment 8H, 1025
Hancock Street, Quincy, MA 02169 (US). HEDDAYA, | Published
Abdelsalam, A.; 901 Stearns Hill Road, Waltham, MA Without international search report and to be republished
02154 (US). YATES, David, J.; 2809 Village Road West, upon receipt of that report.
Norwood, MA 02062 (US).

(74) Agents: THIBODEAU, David, J., Jr. et al.; Hamilton, Brook,
Smith & Reynolds, P.C., Two Militia Drive, Lexington, MA
02173 (US).

(54) Title: A METHOD AND SYSTEM FOR DISTRIBUTED CACHING, PREFETCHING AND REPLICATION

Home server 21 o
cache 20-) cache !
sérverx = __ 1 SErveY ¥ ~
i / \ SS9
16-3
B

30 1440 \ w0 (O S
coche 1a-a w1

Server X \ 39
cache - ¢ache
server X router 142 & 18-6 13-5 Server Y

3 3 \\

18— ST 8112
16-1

== " Router
38
clIe
12-1 -

(57) Abstract

A technique for automatic, transparent, distributed, scalable and robust caching, prefetching, and replication in a computer network
that request messages for a particular document follow paths from the clients to a home server that form a routing graph. Client request
messages are routed up the graph towards the home server as would normally occur in the absence of caching. However, cache servers are
located along the route, and may intercept requests if they can be serviced. In order to be able to service requests in this manner without
departing from standard network protocols, the cache server needs to be able to insert a packet filter into the router associated with it, and
needs also to proxy for the homer server from the perspective of the client. Cache servers may cooperate to service client requests by
caching and discarding documents based on its local load, the load on its neighboring caches, attached communication path load, and on
document popularity. The cache servers can also implement security schemes and other document transformation features.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KpP

KR
K7Z
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
VAL

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 98/53410 PCT/US98/09943

A METHOD AND SYSTEM FOR DISTRIBUTED
CACHING, PREFETCHING AND REPLICATION

BACKGROUND

Computer networks, such as the Internet, private
intranets, eXtranets, and virtual private networks, are
increasingly being used for a variety of endeavors
including the storage and retrieval of information,
communication, electrohic commerce, entertainment, and
other applications. In these networks certain computers,
known as servers, are used to store and supply information.
One type of server, known as a host or home server,
provides access to information such as data or programs
stored in various computer file formats but generically
referred to herein as a "document". While in the Internet
the documents are typically primarily composed of text and
graphics, each such document can actually be a highly
formatted computer file containing data structures that are
a repository for a variety of information including text,
tables, graphic images, sounds, motion pictures,
animations, computer program code, and/or many other types
of digitized information.

Other computers in the network, known as clients,
allow a user to access a document by reguesting that a copy
be sent by the home server over the network to the client.
In order for a client to obtain information from a home
server, each document typically has an address by which it
can be referenced. For example, in the context of the
Internet and within the communication protocol known as
Hyper Text Transfer Protocol (HTTP), the address is
typically an alphanumeric string, known as a Uniform
Resource Locator (URL), that specifies (a) an address of

10

15

20

25

30

WO 98/53410

PCT/US98/09943

the home server from which to obtain the information in the
form of a name or a numerical address, and (b) a local
information text string that identifies the information
requested by the client, which may be a file name, a search
request, or other identification.

After the user specifies a URL to the client computer,
the address portion of the URL is sent over the network to
a naming service such as the Domain Name Service (DNS) in
order to obtain instructions for how to establish a
connection with the correct home server. Once the
connection with the server is established, the client can
then retrieve the desired document by passing the local
information text string over the network directly to the
home server. The server then retrieves the document Ffrom
its local disk or memory storage and transmits the document
over the network to the client. The network connection
between the home server and the client is then terminated.

Computer and network industry analysts and experts are
presently quite concerned that traffic on the Internet is
becoming so heavy that the very nature of the way in which
it is possible to use the Internet may change. In
particular, many individuals now believe that the Internet
is intolerably slow and is no longer a reliable entity for
the exchange of information in a timely fashion.

The present bottlenecks are no doubt the result of
exponential increases in the number of users as well as in
the number of complex documents such as multimedia files
being sent. It might appear that the answer is simply to
add more bandwidth to the physical connections between
servers and clients. This will come, however, only at the
expense of installing high bandwidth interconnection

hardware, such as coaxial or fiber optic cable and

10

15

20

25

30

WO 98/53410 PCT/US98/09943

associated modems and the like, into homes and
neighborhoods around the world.

Furthermore, added bandwidth by itself perhaps would
not guarantee that performance would improve. In
particular, large multimedia files such as for video
entertainment would still potentially displace higher
priority types of data, such as corporate E-mails.
Unfortunately, bandwidth allocation schemes are difficult
to implement, short of modifying existing network
communication protocols. The communication technology used
on the Internet, called TCP/IP, is a simple, elegant
protocol that allows people running many different types of
computers such as Apple Macintoshes, IBM-compatible PCs,
and UNIX workstations to share data. While there are
ambitious proposals to extend the TCP/IP protocol so that
the address can include information about packet content,
these proposals are technologically complex and would
require coordination between operators of many thousands of
computer networks. To expect that modifications will be
made to existing TCP/IP protocols is thus perhaps
unrealistic.

An approach taken by some has been to recognize that
the rapidly growing use of the Internet will continue to
outstrip server capacity as well as the bandwidth capacity
of the communication media. These schemes begin with the
premise that the basic client-server model (where clients
connect directly to home servers) is wasteful of resources,
especially for information which needs to be distributed
widely from a single home server to many clients. There
are indeed, many examples of where Internet servers have
simply failed because of their inability to cope with the

unexpected demand placed upon them.

10

15

20

25

30

WO 98/53410 PCT/US98/09943

To alleviate the demand on home servers, large central
document caches may be used. Caches are an attempt to
reduce the waste of repeated requests for the same document
from many clients to a particular home server. By
intercepting parallel requests, a cache can be used to
serve copies of the same document to multiple client
locations.

From the client's point of view, the interaction with
a cache typically occurs in a manner which is transparent
to the user, but which is slightly different from a network
messaging standpoint. The difference is that when the
address portion of the request is submitted to the Domain
Name Service (DNS) to look up the information needed to
connect to the home server, the DNS has been programmed to
return the address of a cache instead of the actual
original home server.

Alternatively, a server node, acting as a proxy for
the client, may issue probe messages to search for a cache
copy. Once a cache copy is found at a particular node in
the network, the request is then forwarded to that node.
For example, under the auspices of the National Science
Foundation, document caches have been placed at various
locations in the United States in order to eliminate
bottlenecks at cross-oceanic network connections.
Generally, certain of these caches located on the West
Coast handle requests for documents from the Agia-Pacific
and South American countries, and a number of those located
on the East Coast handle requests for documents from
Europe. Other of these national caches handle requests for
popular documents located throughout the United States.

However, such caching techniques do not necessarily or
even typically achieve optimum distribution of document

request loading. 1In particular, in order for the caches to

10

15

20

25

30

WO 98/53410 PCT/US98/09943

be most effective, the DNS name service or other message
routing mechanism must be appropriately modified to
intercept requests for documents for which the expected
popularity is high. The introduction of cache copies thus
increases the communication overhead of name resolution,
because of the need to locate the transient copies. The
name service must register these copies as they come into
existence, disseminate this information to distribute
demand for the documents, and ensure the timely removal of
records for deleted cache copies. Often times, the cache
lookup order is fixed, and/or changes in document
distribution must be implemented by human intervention.

Unfortunately, frequent and pronounced changes in
request patterns can force the identity, location, and even
the number, of cache copies to be highly transient. The
regulting need for updating of cache directories means that
they cannot typically be replicated efficiently on a large
scale, which can thus turn the name service itself into a
bottleneck.

Another possible approach to implementing caches is to
change the client/server interaction protocol so that
clients proactively identify suitable cache copieg using a
fully distributed protocol, for example, by issuing probes
in randomized directions. Aside from the complexity of
modifying existing protocols and message cost introduced by
such an approach, such a scheme also adds one or more round
trip delays to the total document service latency perceived

by the client.

SUMMARY OF THE INVENTION
The present invention is an automatic, distributed,
and transparent caching scheme that exploits the fact that

the paths that document requests follow through a computer

10

15

20

25

30

WO 98/53410 PCT/US98/09943

network from a client to a particular document on a
particular home server naturally form a routing graph, or
tree.

According to the invention, cache servers are placed
throughout the network, such that if a document request can
be fulfilled at some intermediate node along the routing
graph, it will be serviced by the intermediate node
returning the cached document to the client. The document
request messages are thus responded to before they ever
reach the home server. Since document request messages are
permitted to be routed from clients in the direction of the
home server up the routing graph in the same manner as
would occur in the absence of caching, naming services do
not need modification.

In order to be able to service requests in this
manner without departing from standard network protocols, a
cache server includes a packet filter in its associated
router. The filter extracts document request packets that
are highly likely to hit in the associated cache.

The cache server also preferably acts as a
communication protocol proxy for the home server. That is,
as part of fulfilling document request messages at the
intermediate node locations, the client is sent appropriate
messages, depending upon the communication protocol in
use, to spoof the client into believing that the document
was actually received from the home server.

The invention alsc provides a manner in which caching
servers may cooperate to service client requests. In
particular, each server has the ability to cache and
discard documents based on its local load, the load on its
neighboring caches, adjacent communication path load, and
on document popularity. For example, each server maintains
an estimate of the load at its neighbors, and communicates

10

15

20

25

30

WO 98/53410 PCT/US98/09943

its own load estimate to neighboring cache servers. If a
cache server notices that it is overlocaded with respect to
any of its neighbors, it offloads or transfers a fraction
of its work to its under loaded neighbors. To do so, a
cache server also preferably learns the identity of its
neighboring upstream (or parent)and downstream (or child)
nodes on the routing graph that is rooted at a given home
server.

There are several advantages to the basic concepts of
a document caching system according to the invention.

First, the approach does not need to reguest an
address lookup from a cache directory, to redirect document
requests, or to otherwise probe other elements of the
network to locate cache copies. ILocation of the cache copy
thus occurs fortuitously, along the natural path that the
request message follows anyway. The client thus does not
experience delays or bottlenecks associated with waiting
for other entities in the network to find appropriate cache
copies.

In addition, the system as a whole permits cache
copies of documents to diffuse through the network as
needed, which in turn diffuses bottlenecks at the caches
and well as along the communication paths.

There is also a corresponding reduction in network
bandwidth consumption and response time, because cache
copies are always placed nearer to the original server than
to the client. Document reguest messages and the documents
themselves therefore typically do not need to travel the
full distance between the server and each client every time
they are requested. Hence, overall network bandwidth is

conserved, response times are reduced, and load is more

globally balanced.

10

15

20

25

30

WO 98/53410 PCT/US98/09943

The invention thus not only helps to dampen
differences in the load demand on the host servers, but
also reduces the load on network communication resources,
without requiring any modification to existing network
protocols.

Furthermore, because cache copies are distributed
through the network, there is no single expected point of
failure of the caching system, and the system is robust and
fail-safe.

The technique is also scalable, in the sense that as
more cache servers are added, both clients and serxrvers
experience a likewise benefit.

The invention can be used to implement additional
functionality in a network. These various functions are a
direct result of the fact that the packet filter
implemented at the router associated with the cache servers
can also do more than simply divert reguests for copies of
documents to the local cache.

For example, popularity statistics are of necessity
collected by the cache servers, in order to control the
choice of what documents to cache. Each cache server thus
keeps track of how many references to a particular document
are received and from where they are received and can
determine aggregate request amounts and request rates.

This data can be collected at a central location, such as
by network region, so it is then possible for a publisher
of documents to not only obtain statistics about the hit
rate on their material but also where in the network the
hits are coming from. This is important not only for
document popularity analysis, but also electronic commerce
and intellectual property tracking.

The cache servers can also be used to host replicas of

popular documents such as databases, search engine index

10

15

20

25

30

WO 98/53410 PCT/US98/09943

files, and the like, by acting as load splitters from the
service provider perspective. In other words, database
providers can arrange to have their documents placed into
the network, pushing out data closer to the clients that
desire access to it, wherever the best placements might be.

A set of security features may also be readily
attached to the cache servers.

One such feature is the authentication of the socurces
of request messages and other information. This is
possible because the cache servers maintain information as
to the physical source of document reguest messages and of
the documents themselves. The mechanism also arises from
the fact that the nodes have a filter and a packet router.
The filter and packet router may be used not only to keep
track of how to redirect reguests to cache copies, but also
to restrict access to the cache copies, such as by
authenticating the reguest for the information. The
invention also enables various types of document
distribution in a the network. For example, the invention
permits document compression, which is another form of
conserving bandwidth, or encryption, as long as a
particular server and client node are committed to
communicating by using cache servers, e.g., the first and
last nodes along the path between the client and the server
in the network contain cache servers.

The invention also permits the efficient caching of
dynamic content documents. Such dynamic content documents
are of the type where what is to be returned to the client
changes on the fly, typically in accordance with program
instructions. When the invention recognizes the existence
of dynamic content documents in its cache, it caches not

only the data for the document, but also allows for

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-10-

fetching and executing of programs that specify how the
document is to be displayed or when the data is retrieved.
The invention also improves the delivery of stored
continuous media such as audio and video data files since
the number of network nodes between a server and a client

are reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the advantages
provided by the invention, reference should be had to the
following detailed description together with the
accompanying drawings, in which:

FIG. 1 depicts a typical computer network showing a
request path for a single document and the location of
cache servers along the path according to the invention;

FIG. 2 is a communication layer diagram illustrating
how a resource manager, protocol proxy, and snooper are
used to implement the invention;

FIG. 3 shows the typical stages in a document request
over the network;

FIG. 4 is a flow chart of the operations performed by
a leaf server located on the routing path according to the
invention;

FIG. 5 is a flow chart of the operations performed by
a intermediate non-leaf cache server;

FIG. 6 is a flow chart of the operations performed by
a last cache server on the routing path;

FIG. 7 illustrates the interception of a document
reqguest message by an intermediate server;

FIG. 8 also illustrates the interception of a document
request message in more detail;

FIGS. 9(a) and 9(b) illustrate how diffusion can

proceed in a worst case client request scenario; and

10

15

20

25

30

WO 98/53410 PCT/US98/09943

o

FIG. 10 illustrates how the cache servers may

implement document transformation functions.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

1. Introduction

Turning attention now to FIG. 1, a computer network 10
such as the Internet, extranet, private intranet, virtual
private network, local area network, or any other type of

computer network consists of a number of network entities

including client computers 12-1, 12-2, 12-3, ..., 12-4
(collectively, clients 12), routers 14-1, 14-2, ..., 14-10,
cache servers 16-1, 16-3, 16-4, 16-6, 16-8, and 16-10, and
home server 20. The network may make use of any and

various types of physical layer signal transmission media
such as public and private telephone wires, microwave
links, cellular and wireless, satellite links, and other
types of data transmission.

In the illustrated network, certain routers 14 have
associated with them cache servers 16, whereas other
routers do not have associated cache servers. The cache
servers 16 include various types of storage for documents
in the form of a cache storage 18-1 which may include disk
storage 18-1-1 and/or memory storage 18-1-2.

The clients 12 and home server 20 operate as in the
prior art to permit distribution of a wide variety of
information, typically in the form of "documents". Such
documents may actually contain text, graphics, pictures,
audio, video, computer programs and any number of types of
information that can be stored in a computer file or parts
of a computer file. Furthermore, certain documents may be
produced at the time that access is regquested to them, by

executing a program.

WO 98/53410 PCT/US98/09943

-12-

It will be assumed in the following discussion that
the network 10 is the Internet, that the information is
encoded in the form of the Hyper Text Transfer Protocol
(HTTP) documents, and that document reguest messages are
sent in the form of Uniform Resource Locators (URLs) using
the TCP/IP layered protocol. This is with the
understanding that other types of wired, switched, and
wireless networks, and other types of protocols such as
FTP, Gopher, SMTP, NNTP, etc. may make advantageous use of
the invention. In addition, although the invention is
discussed in the context of a client-server type of
communication model, it should be understood that the
principals of the invention are egually applicable to peer-
to-peer networks.

A request message for a particular document, for
example, originates at one of the client computers, such as
client 12-1. The message is a request by the client 12 for
the home server 20 to send a copy of document that is
presently stored at the home server 20 location such as on
a disk. The document request message is passed through one
or more routers 14, such as routers 14-1, 14-2, 14-3, in
the direction of the illustrated arrows, on its way to the
home server 20.

In networks such as the Internet, document request
messages may pass through as many as fifteen or more nodes
or "hops" through routers 14 before reaching their intended
destination. Requests for the same document from other
clientg, such as clients 12-2, 12-3, or 12-4 alsoc pass
through different routers 14 on their way to the home
server 20 at the same time.

It should also be understood that although the routers

14 and cache servers 16 are shown as separate elements in

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-13-

FIG. 1, that their functionality may be combined into a
single element.

A model is useful for understanding the nature of how
requests from multiple clients for one particular document
travel across a path the computer network 10. The model is
that structure, T, which is induced by the effect of
routing algorithm on the document request messages as they
travel through the network to the home server 20. As shown
in FIG. 1, the home server 20 can thus be thought of as
being at the root node of the structure, T, with document
requests originating at the leaf node levels farthest away
from the root, namely at clients 12-1, 12-2, ..., 12-4.

The structure T also includes many intermediate nodes which
are located the routers 14.

While the structure T of the set of paths that client
requests follow towards a given home server 20 is
accurately and generally described as a data directed,
acyclic graph, the present exposition does not benefit from
the added complexity. In particular, when a single
particular document is considered as being located at only
one home server, the structure can be referred to as a tree
with a single root. With that understanding we use the
term tree to describe the structure T herein, with the
understanding that a graph model may also be used. With
this model in mind, the entire Internet can be thought of
ac a forest of trees or graphs, each rooted at a different
home server 20 which is responsible for providing an
authoritative permanent copy of some set of documents.

In accordance with the invention, copies of documents
are located in the network at cache servers 16. According
to the invention, the placement of cache copies, and hence
the diffusion of load, is constrained to nodes in the tree

structure, T. This avoids the need for clients to lookup

10

15

20

25

30

WO 98/53410 PCT/US98/09943

~14 -

the locations of cache copies, either by directly
contacting the home server 20, or a naming service such as
a Domain Name Service (DNS), or by probing the network in
search of apropriate cache copies.

The present invention also assumes that cache servers
16 lie on the path along the tree that document request
messages would naturally take from the client 12 to the
home server 20, with the cache servers 16 cooperating to
of f-1load excess load at the home server 20, or to diffuse
other potential performance bottlenecks such as
communication links themselves. In effect, the routers 14
having associated cache servers 16 inspect document request
message packets as they fly-by and intercept any regqguest
for which it may be possible to fulfill by providing a
cached document instead.

In a most general description of the operation of the
invention, document request messages travel up the tree T,
from a client at which it originated, such as client 12-3,
towards the home server 20. Certain routers encountered by
the document request message along the way, such as router
14-7, do not have local cache servers 16, and thus simply
pass the document request message up to Findeathe next
router in the tree, such as router 14-6.

However, certain other routers, such as router 14-6,
do have a local cache server 16-6, in which case the
document reguest message 1s examined to determine if it is
seeking a document located in the local cache store 18. If
a cache copy is encountered at cache server 16-6, then that
copy is returned to the client 12, and the reguest message
is not permitted to continue on its way to the home server
20. If however, a cache copy is not encountered at the
particular cache server 16-6, the request message continues

to the next router 14-4 on the path to the home server 20.

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-15-~

When a request message packet enters a router 14, the
router first passes the request message to a portion of its
software referred to herein as the filter code. The filter
code in the router 14 is updated as necessary by the local
cache server 16. The filter code depends on the types of
packets, the cache contents, the load at the local cache
server 16, or the load on the attached communication links.
The filter causes the interception of the packet (for an
attempted service by the local cache sexrver 16) or passes
the packet back to the router 14 to determine the next hop
the packet should take on its way to the home server 20.

Ideally, the implementation of the cache servers 16 is
such that no changes are required to the normal operating
mode of either clients 12 or servers 20. Another goal is
to have a design that can be gradually deployed into the
existing infrastructure of the network 10. This also
requires that any new mechanisms preferably be compatible
with existing communication protocols.

To accomplish this a cache server 16 and associated
router 14 preferably consist of four functional building
blocks, as shown in the layer diagram of FIG. 2. At a
relatively higher layer protocol level, such as the
application layer, the cache server 16 includes an HTTP
proxy 22 and a resource manager 24. At a lower layer, such
as the physical layer, the router typically implements a
packet filter 26 and an IP proxy or snooper 28.

The HTTP proxy 22 implements a standard HTTP protocol
with responsibilities including storage management and the
maintenance of the index structures necessary for accessing
cached documents. If the HTTP proxy 22 receives a request
for a document not located in the local cache 18, it
requests the document from the home server 20 and respond

to the request when the document arrives. The HTTP proxy

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-16-

22 is configured to cache documentg only as instructed by
the resource manager 24.

While FIG. 2 shows two types of proxying, namely at
the HTTP and IP level, it should be understood that the
implementation can also include proxying at other layers,
including the application layer, IP layer, or some other
layer in between, such as a transport, segsion,
presentation, or other layer.

The resource manager 24 implements a protocol to
diffuse document copies through the network 10, as will be
described in greater detail below. The resource manager 24
is responsible for maintaining state information used by
the document load diffusion mechanism. The resource
manager may be programmed to not only manage the load on
the cache servers 16 themselves, but may also be programmed
to manage the traffic on the communication paths used
interconnect the routers 14.

To accomplish this load management, oI load balancing,
the resource manager 24 maintains information about the
identity and the load of its neighboring cache servers 30.
The details of how neighboring cache server information is
maintained is discussed below in Section 3.

In addition, for each document in the cache 18, the
resource manager 24 distinguishes between requests received
through each of its neighboring cache servers 30. This is
done by maintaining a separate hit count for requests
received from each neighboring cache server 30. Using such
information, the resource manager 24 computes the fraction
of excess load to be diffused. Once these fractions are
determined, the resource manager 24 informs its under-
loaded neighbors 30 which document to cache and the
fraction of requests they should undertake. These

fractions are also used to generate new filter code to be

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-17-

injected into the associated router 14. A similar process
is performed by the under-loaded neighbors 30. If
necessary, the resource manager 24 at the under-loaded
neighbor 20 informs the attached HTTP proxy 22 to add new
documents to its cache 18.

Other responsibilities of the resource manager 24
include neighborhood discovery, propagating load
information to the neighboring servers 30, and discovering
and recovering from potential barriers to load balancing.
These mechanisms are discussed in more detail below.

The routers 14 take an active role in assisting cache
servers 16 to achieve cache server and/or communication
path balancing goals. This is accomplished by allowing the
resource manager 24 to inject functionality into the router
14 in the form of the code that implements the filter 26
and snooper 28. In particular, all packets passing through
a router 14 not addressed directly to a host server 20 are
first passed to the snooper 28. The snooper 28 inspects a
packet and determines its type, destination, and the
document requested. Depending on the state of the cache
server 16 and packet type, the snooper 28 could intercept
the packet or simply forward the packet to the next hop, or
router 14, along the intended destination path to the home
server 20.

To determine if a requested document is located at the
local cache server 16, the snooper 28 queries the filter
26. If the filter 26 indicates that the requested document
is cached and can be serviced locally, then the packet is
intercepted and passed to the resource manager 24.
Otherwise, the packet is passed on to the next hop towards
the destination home server 20.

The snooper 28 is typically aware of the TCP protocol
and the structure of both TCP and HTTP packets. Another

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-18-~

functionality of the snooper 28 is to extract copies of
HTTP request packets and pass them up to the resource
manager 24. This feature is used to assist the resource
manager 24 in discovering its neighborhood and recovering

from potential barriers.

2. Handling an HTTP Document Request in a TCP/IP Network

Current implementations of networks 10 that use HTTP
rely on the layered TCP/IP protocol for reliable end-to-end
communication between clients 12 and servers 20. This
layering divides the normal processing of a request message
into three steps; connection establishment (i.e., TCP-level
three way handshake in the form of {SYN} messages), HTTP
document request/reply in the form of {GET} messages, and
connection termination in the form of {FIN} messages.

This process is depicted in FIG. 3, where the client
12 first issues a {SYN} message with a sequence number to
the home server 20, and the home server 20 returns a {SYN}
message with an acknowledgment {ACK}. 1In response to this,
the client 12 then sends a document reguest in the form of
a {GET} message that includes the URL of the desired
document . The document is then forwarded by the home
server 20 to the client 12. After the client 12 returns an
acknowledgment, the server 20 and client 12 terminate the
connection by exchanging {FIN} and {ACK} messages.

The main hurdle in actually implementing the cache
servers 16 as explained above in such an environment is the
requirement that they need to identify the document
requested by a client 12. However, as seen in FIG. 3 the
URL information is typically advertised by an HTTP client
12 only after a TCP/IP connection has already been
established with the home server 20. One possible solution
would thus be to have all such connections be established

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-19-~

with the home server 20 and have snoopers 28 at
intermediate routers 14 intercept all {GET} packets. Even
though this approach might relieve a significant amount of
load from a home server, it still required that TCP
connections associated with such documents reach the home
server 20, which defeats the purpose of attempting to off-
load the home server 20. During high demand periods, such
requests would amount to a flood of {SYN} requests on the
home server 20. In addition, if the initial {SYN} is not
intercepted, both establishing and tear down of connections
becomes significantly more complicated.

To overcome this hurdle, in the preferred embodiment,
intermediate routers 14 have some awareness of the TCP
protocol. TCP aware routers 14 are able to detect TCP
connection requests to all HTTP servers (i.e., a ({SYN}
packet directed to the HTTP port), and have the ability to
act as a proxy for, or "spoof" the home server 20.

This functionality is implemented by the snooper 28.
In particular, snoopers 28 located in routers 14 on the
path to a home server 20 inspect packets that fly-by,
identify such packets, and intercept any {SYN} packets
directed to HTTP home servers 20. As {SYN} packets do not
contain any information identifying which document the
client 12 intends to reguest, the snooper 28 acts as a
proxy for, or "spoofs" the home server 20, by establishing
a connection between the client 12 and the local transport
layer in the cache server 16, and noting the initial
sequence numbers used by both the client 12 and the local
transport layer.

After the connection is established the sncoper 28
inspects all packets that fly-by, and waits for the
corresponding {GET} request. Once the {GET} request

arrives the snooper 28 queries the local filter 26 and the

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-20-

resource manager 24 to determine if the requested document
is cached. If the document is cached the snooper 28
forwards the HTTP {GET} message to the local resource
manager 24, waits for the resource manager 24 to service
the request, and then terminates the connection.

Otherwise, the requested document is not cached (i.e., the
filter 26 or resource manager 24 missed). Several
different approaches may be taken to servicing the document
request at this point.

In a first approach, the TCP connection is handed off,
wherein the snooper 28 closes the server half of the
spoofed TCP connection with the client 12, and forwards the
document regquest in the form of a composite "piggy back"
{SYN+GET} message in the direction of the home server 20.
In addition, the {SYN+GET} message contains all the state
information needed to hand-off the server half of the TCP
connection to any other intermediate cache server on the
path to the home server 20 which happens to cache the
requested document.

In a second alternative approach, the snooper may act
as a TCP relay, maintaining the TCP connection with the
client, and relaying the {SYN+GET} message on a separate
connection to the next intermediate cache sexrver on the
path to the home server 20.

The above hand-off process is illustrated in the flow
chart of FIG. 4. This process is carried out by a
particular class of cache servers 16 referred to as leaf
node servers 38, which are the cache servers 16 that are on
the extreme lower level nodes of the tree T, i.e., the
first servers to intercept a {SYN} packet from a client 12.
The leaf node servers 28 in the tree T depicted in FIG. 1

are cache servers 16-1, 16-6, and 16-8.

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-21-

As shown in step 41 of FIG. 4, when a leaf node server
38 receives a {SYN} packet, the home server 20 is proxied
for, or “spoofed”, by establishing a TCP connection
directly between the leaf node server 38 and the client 12.
The leaf node server 38 then waits to intercept the
corresponding {GET} request from the client 12.

Note that spoofing thus occurs in the sense that
packets exchanged between the client 12 and a cache server
16 are modified by the snooper 28 in the above scenario.

In particular, the network address of a cache server 16
which is serxrvicing a regquest is replaced with the network
address of the home server 20 and in a connection hand-off,
the sequence numbers cf bytes issued by the cache server 16
have to follow the sequence number as determined by the
leaf server 38.

Returning to step 41, if the requested document passes
the cache query test by the filter 28, and in step 42, and
if the resource manager 22 detects that the document is
present in the local cache and will permit access to it,
then the document request is serviced locally, in step 45.
In step 45, the {GET} command is forwarded to the resource
manager, which then replies with the requested document.
?inally, the TCP connection between the leaf server 38 and
the client 12 is closed, by spoofing the home server 20
once again and issuing the closing {FIN} and {ACK} messages
to the client.

Otherwise, if there is a miss in step 42 or 43, the
snooper 28 forwards a {SYN+GET} packet in the direction of
the home server 20, and then closes the server half of the
spoofed TCP connection, so that another cache server on the
tree may service it if possible. The steps d) and e) in
FIG. 4 may be asynchronous events and may typically occur

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-22-

in parallel. The snooper 28 at a leaf server 38 then has
to acknowledge the reception of the {GET} reguest.

In the scenario depicted in FIG.1, the upstream
intermediate non-leaf nodes 39 include those with cache
servers 16-3, 16-4, and 16-10. The cache servers 16
located at the non-leaf nodes 39 need to process {SYN+GET}
packets in a slightly different manner. In particular, the
snooper 28 in a non-leaf node 39 intercepts {SYN+GET}
packets only if the requested document is cached and the
local cache server 16 has sufficient capacity to service
it.

FIG. 5 is a detailed flow chart of this process as
performed at the non-leaf intermediate nodes 39. As shown
in step 51, to service such a request, the snooper 28 first
spoofs upon receipt of the {SYN} from the leaf node 38, and
intercepts the following {GET} request. In the following
steps 52 and 53, qQueries are made to the filter 26 and
resource manager 24 as before, to determine if the {GET}
can be processed locally.

If the request can be processed locally, step 55
completes the proxying for the home server 20 by
establishing the server half of the TCP connection with the
client 12, issuing the {GET} to the resource manager 24,
returning the document to the client 12, and closing the
TCP connection.

If the {GET} message cannot be processed locally, step
54 is executed, where the {SYN+GET} is forwarded to the
next node in the tree T.

The main advantage of processing {SYN+GET} packets
differently in the intermediate non-leaf nodes 39 is that a
TCP connection is only handed-off once to the particular
intermediate node 39 that actually has the requested
document. Another advantage is that the {SYN+GET} contains

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-23-

all the state information needed for connection hand-off
(i.e., no additional state information is exchanged between
the snooper 28 at the leaf node server 38 and that at the
intermediate node 39 which is actually caching the
requested document.)

One drawback of piggy-backing {SYN+GET} packets in
this manner is that home servers 20 will not interpret such
packets properly without adapting their transport protocol
to deal with such packets. To avoid this problem and
ensure inter-operability with current network protocols, an
additional precaution can be taken by requiring that the
snooper 28 located at the last intermediate node 39 before
a home server 20 intercept all {SYN+GET} packets. Thus,
when none of the leaf node servers 38 or intermediate node
servers 39 cache the requested document, the last
intermediate server 39 intercepts the {SYN+GET} and relays
an explicit HTTP {GET} request to the home server 20.

To accommodate this case, step 54 of FIG. 5 can be
replaced with the processes illustrated in FIG. 6. In this
case, in step 61, where the next upstream node along the
path, T, (or parent node) is not the home server 20, then
step 62 is entered, where the {SYN+GET} is forwarded to the
next intermediate node on T.

However, if the next node is a home server 20, then
the step 63 is performed. 1In particular, snooper 28
establishes the server half of the TCP connection with the
client 12, and replaces the {SYN+GET} with a {PROXY_GET}
request to the local resource manager 24. The resource
manager 24 translates the {PROXY GET} request to an
explicit {GET} issued to the home server 20. The response
of the home server 20 response is then relayed to the
client 12 in the same manner as if the cache server was

caching the requested document.

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-24-

Another shortcoming of the caching technique described
thus far is that the path along the tree T between a
particular client 12 and the home sexrver 20 can change
after a leaf node server 38 or an intermediate node server
39 decides to service a request. This may occur, for
example, when a network connection, or link, is lost
between two server nodes. FIG. 7 shows this relatively
rare case where the path between the client 12 and the home
server 20 changes while an intermediate cache server 16b is
processing a document regquest from client 12. All {ACK}s
sent by the client 12 will now follow the new path, through
a new cache server 16x, to the home server 20. This causes
cache server 16b to time-out and retransmit its packets.

To solve thisg problem, the snooper 28 at server 1l6b
may keep track of the number of times a packet is re-
transmitted. If a packet is re-transmitted more than a
predetermined number of times, for example, three times,
the snooper 28 then assumes that the path between the
client 12 and the home server 20 has changed, and then
takes steps to terminate the connection with the client 12.
In particular, the snooper 28 aborts the connection with
the client 12 and aborts the connection with cache server
16b, simultaneously spoofing the home server 20 and sending
a reset packet (i.e., an {RST} packet) to the client 12.

In another approach the leaf node servers 28 closest
to the clients 12 and the last hop nodes closest to the
server 20 are provided with only one possible route to the
clients 12 and servers 20, respectively. This is
accomplished by having the cache servers forward client
request messages over cache server - to - cache server
permanent TCP connections, instead of simply letting the
request messages follow their normal routes. The set of
connections, being implemented as a set of properly joined

10

15

20

25

30

WO 98/53410 PCT/US98/09943

~25-

TCP connections, thus automatically adapts to any changes

in IP routing as the network configuration changes.

3. Neighborhood Discovery

However, any resulting changes in the configuration of
adjacent cache servers must also be detected by
communication with neighboring cache gervers in order to
achieve resource load balancing and other advantages
possible with the invention. 1In particular, each cache
server 16 participating in the above-described scheme has
to determine which other servers are in its neighborhood.
In addition, on each routing tree T, a cache server 16 has
to distinguish between upstream servers (located at parent
nodes) and down stream servers (located at child nodes). A
particular node, i, in the tree T is the parent of a node
5, if i is the first cache server 16 on the route from j to
the home server 20, in which case node j is also referred
to as the child of node i.

One method for a cache server 16 to discover its
neighborhood requires some assistance from the underlying
router 14 and snooper 28. At selected times, the resource
manager 24 asks the local router 14 to issue neighborhood
discover messages to each destination in a routing table
which the router 14 maintains.

These neighborhood discovery packets are then
intercepted by a given snooper at another node having a
cache server 16 in the tree. It is then responsibility of
the intercepting cache server 16 to send a reply to the
resource manager 24 at the cache server 16 that issued the
neighborhood discover packet, announcing that it is a
parent (e.g., that it is closer to the home server 20 than
the issuing cache server) and the identity of the tree T

that it is on. The destination port for neighborhood

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-26-

discover packets may be assigned an unlikely port number,
to ensure that the destination home server 20 does not
attempt to process un-intercepted neighborhood packets. A
hop count £field can alsoc be uged to limit neighborhood
discover packets from excessive forwarding.

The main drawback of this approach is that it would
flood the network with neighborhood discover packets. An
alternative approach is to use document request message
packets (i.e., the {SYN+GET} packets) that fly-by the
filter in each cache server 16 anyway.

In this approach, each document regquest message
contains a field identifying the previous hop, that
becomes, under the scenario implemented above, an
identification of the last cache server 16 that a
particular request packet passed through.

As a reguest passes through a router 12 (i.e., it is
not intercepted), the local snooper 28 stamps the IP
address of the attached cache server 16. When a cache
server 16 wants to discover its neighborhood, it then
instructs its attached snooper 28 to extract the last
observed destination and last hop address from request
packets and then passes this information up to the local
resource manager 24.

As shown in FIG. 8, a typical HTTP {GET} message
follows a path from the client 12 through A to the home
sexrver 20 and is intercepted by intermediate cache 16c.
While cache server 16c is processging the request, the path
between the home server 20 and the client 12 changes
causing all acknowledgments to use a different path.

Using this information the resource manager 24 at
cache server l6c determines both which routing trees it is
on and any down stream cache servers 16 on each tree. Once

server 1l6c determines that server 16b is its downstream

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-27 -

child on tree T, cache server 16c has to explicitly inform
cache server 16b that it i1s its parent on T. To reduce the
number of messages exchanged between the different
components (snoopers 28 and resource managers 24), the
snoopers 28 can cache a number of packets and forward them
all at once to the resource managers 24.

Neighborhood information is maintained for a
predetermined number, such as two, of neighborhood
digcovery epochs. If no requests are received through a
child cache server 16b during these periods, the child
cache server 16b 1s removed from the cache server 1léc 's
model of the neighborhood. The parent cache server 1lé6c
then also informs the child cache server 16b of its
intention to do so.

It is also possible that a cache server 16 does not
have a parent snooper 28 on the routing tree to the home
gerver 20. In this case, the snooper 28 at cache server
16b sends a neighborhood discovery packet in the direction
of the home server 20. An upstream snooper such as the one
at server 16c receives the packet and informs 16b that it
is its parent on the tree to the home server 20. However,
if the snooper 28 at 16b does not have a parent node such
as 16c on the tree to home server 20 it replaces 16b
address on the neighborhood discovery packet and forwards
it in the direction of the home server 20.

This neighborhood discovery scheme has a number of
advantages. First, the routing tree T does not have to be
completely constructed for the caching protocol to start
operating. Another advantage is that the cooperating cache
servers 16 can dynamically discover and adapt to routing
changes. Finally the protocol is totally distributed and

is therefore robust against server failures.

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-28-

4. Load Balancing

Unlike most other caching schemes, the caching scheme
according to the invention requires distribution of cache
copies to the cache servers 16 prior to clients actually
requesting them. In other words, documents are moved
among the cache servers 16 in anticipation of future
document requests, rather than in direct response to any
one particular document request message by the clients 12.

The above scheme of document caching and neighborhood
discovery lends itself to a number of different types of
such cache load distribution and/or load balancing
objectives for both the cache servers 16 as well as the
communication paths which interconnect them. In the
preferred embodiment, this load distribution scheme
attempts to avoid introducing an overhead that grows
quickly with the size of the caching system, by using a
diffusion based caching algorithm that relies strictly on
local information.

In particular, the resource managers 24 create cache
copies only when an upstream (“parent”) node in the routing
tree T detects a less loaded downstream (“child”) node or
1ink, to which it can shift some of its document service
load by giving it a copy of one of its cached documents.
“Load” herein can be a number of different performance
criteria such as rate of request fulfillment, client
response time, or fraction of time the server is busy.

An imbalance in the opposite direction causes a child
node to delete some of its cached documents, or to
otherwise reduce the fraction of requests for these
documents that it wishes to serve.

Typically, documents which are the one being requested

of parent nodes most often by a child node according to

10

15

20

25

WO 98/53410 PCT/US98/09943

-29-

some measure are the documents which are directed to less
loaded child nodes.

Similarly, when a cache server 16 must choose tc drop
documents from its local cache store 18, such documents are
those typically being the least requested documents.

More particularly, when relegating load to a neighbor,
a cache serxrver 16 can push or release a document to a child
or a parent, respectively. There are two goals with the
present document caching by diffusion mechanism, which
typically do not exist in traditional load diffusion
processes. This is manifested in the need for the cache
servers to determine which document to replicate, as well
as to determine what fraction of document requests (i.e.,
load) should be relegated to an underloaded neighbor 30.

A first goal is to determine how a cache server
selects a document to pass to an underloaded neighbor. An
objective here is to extract the maximum capacity of all of
the cache servers 16 in the network. A second objective is
to reduce response time, by moving popular documents closer
to clients and less popular documents away from clients,
all by creating the least number of replicas. These goals
are accomplished while also considering communication path
load between cache servers 16.

To achieve these objectives, an overloaded cache
server located at node i determines the least underloaded

cache sexrver at a child node j such that

10

15

20

25

30

WO 98/53410 PCT/US98/09943
-30-

Lstk,Vke C,

where L; is the load at a particular cache server i, and Ci
is the set of all cache servers. The overloaded cache
server i1 pushes to the child j a fraction of the requests
for the most popular document. Specifically, a document d

is pushed from node i to node j if it has the following
property

le(d) :manGDini(g)

where Di is the set of documents cached at node 1. In the

other direction, a document d is released by node i to node
j if

P (d)=min,_, P(8)

This policy is called max-min document diffusion, and it
will satisfy the first two goals stated above.

A given cache can be viewed as a bin that is to be
filled with documents in such a manner as to contribute the
most to alleviating load. Thus, the larger the load
associated with a given document, the smaller the number of

documents that need to be placed in the particular

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 98/53410 PCT/US98/09943
-31-

cache. Max-min document diffusion provides a least number
of documents in a cache to satisfy this third condition.
Having now determined which documents to diffuse, a
cache server must also figure out how to change the
fraction of reguests that they intercept when relegating
their load to a neighbor. This fraction can be determined
by considering how a cache server pushes a fraction of the
load imposed by a document. Specifically, assume that node
i is the parent of node j and that i is overloaded with
respect to j. Furthermore, assume that node i wishes to
push a number of requests equal to R;;(d) of a total number
of requests that it serves for document 4 to node j. If

the total number of requests is defined as

ﬁ ji(d)A j,'(d)

then the number of requests serviced by node i for document

d is therefore given by

P (d)= Z ﬁm,-(d)Am,-(d)

meC;

and, after pushing R;;(d) requests to node j, node i will

be serving a number of requests given by

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 98/53410 PCT/US98/09943
-32-

Pid)=Y" B, (DA, (D)-B DA D) +B (DA, (d)

meC,

where

Aifd)=A(d)-R (d)

and Aﬁ(d) represents the number of reguests not
intercepted by node j after the push to node j takes
effect. Of A’ ;(d) the new fraction intercepted by node i
is denoted by p’;;(d). Note also that

R(d)=B (DA (D -BUDAAD

Using the above values of A’ ;(d) and R’;(d) it is
straightforward to see that

and by algebraic manipulation, that the new value of

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 98/53410 PCT/US98/09943
-33-

Bﬂ(d)Aﬂ(d)_Rﬂ(d)
Aji(d) ”‘le.(d)

After computing the new fraction £’,;(d), node i updates

ﬁ;@hz

its associated filter and forwards a copy of document d to
node j, directing node j to increase the number of requests
that node j intercepts by R;;(d).

Once node j receives this information it computes

R
/ = i
ij(d)——A (1 Bmi(d))+[3mi(d),VmeCj
Ji
and reflects these updates in its local filter code. To

complete the analysis, note that the number of requests

filtered by node j increases by Ry (d). It is also known
that

Pid)=Y B (DA, (d)

meCj

SUBSTITUTE SHEET (RULE 26)

WO 98/53410 PCT/US98/09943
-34-

and, by substituting the new value of B’y (d) one obtains

R(d)

Pj(d) <2 (P @B @I,
and by algebraic manipulation, that
10
. Py(d)- :’g A (d)+P (d)
=P (d)*R (D)
20

thus completing the analysis.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-35-

With large documents, it may be advantageous for the
local cache 18 to only include a portion of the requested
document. In this event, the cache gerver can begin to
provide the locally cached portion of the document to the
client 12, while at the same time regquesting the remainder
of the document be sent by the home server 20.

Other criteria may include document size, document
type, direction of transmission, or priority associated
with particular documents. '

The cache server 16 and router 12 may also make use of
communication buffers in order to favor message traffic
which is determined to have higher priority.

Related documents of the same types or which are
recognized in some way by cache servers 16 as normally
being requested together in close succession can be shifted
between cache servers in the same operation.

Each cache server 16 is thus given the ability to
cache and discard documents based upon its local load, its
neighbors' loads, communication path load, and on document
attributes such as popularity, size, cost to fetch, etec.

In particular, each server maintains an estimate of the
load at its neighbors and/or also transmits at various
times, or "gossips" about its actual load to neighboring
cache servers 16. If a cache server 16 notices that it is
overloaded in some respect as compared to its neighbors, it
relegates a fraction of its future predicted work to its
less loaded child or parent neighbors as described above.

The invention thus also lends itself to load
splitting, where neighbor ("sibling") nodes on the same
path in the routing tree T for a given home server may

share the request load for a particular document.

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-36-

The above document diffusion algorithm may experience
certain difficulties in optimized load distribution. In
particular, a given cache server j can become a potential
barrier to cache copies when it has at least two child
cache servers k and k', and a parent cache server 1, such

that the load, L, on each server satisfies the expression:

Lk/sLstist

and cache server j does not cache any of the files required
by its under-loaded child k.

FIG. 9(a) illustrates an example of such a situation.
The caching system consists of a home server 20 (at node
number 1) and three intermediate servers 39 (as nodes 2, 3,
and 4.) Requests are only being generated by the leatf
nodes, in particular, documents d_1 and d_2 are being
requested by node 4, and d_3 is being requested by node 3.
The figure shows the placement of cache copies at
particular nodes and the requests serviced by each cached
copy .

In this example, the cache server 16 at node 2 is the
potential barrier. It cannot diffuse any load to the cache
server at node 3, since it does not cache d_3. 1In
addition, the cache server 16 at node 2 isolates the cache
server at node 1 from recognizing the existence of the
problem.

One possible optimized load assignment would
distribute the load evenly among all four nodes with each
node servicing requests. FIG. 9(b) illustrates file cache

and load distributions that would satisfy this condition.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-37-

The diffusion based scheme can be altered, however, so
that a cache server 16 can detect such undesirable states
as shown in FIG. 9(a) and recover from them. In
particular, a cache server k can assume that its parent
server j 1is a potential barrier if k remains under-
loaded, relative to j , for more than a predetermined
number of time epochs, such as two, without action taken by
j to correct the under-loaded situation. In the example
of FIG. 9(a), cache server k would correspond to node 3,
with cache server j corresponding to node 2. Upon
detecting a lack of diffused load from its parent node k ,
the child node can infer that the parent node does not
cache any of the documents requested by the subtree rooted
at k. Once copies of these documents are eventually
served to it, the server k can then cache them normally.
This technique is referred to as tunneling, because server
k in this case is able to obtain and cache copies even in
the presence of a parent node Jj which represents a high

load barrier.

5. Other Features

The invention can be used to implement additional
functionality in a network. These various functions are a
direct result of the fact that the filter 26 located at the
routers 14 can do more than simply divert requests for
copies of documents to the local cache server 16.

For example, document popularity statistics are of
necessity collected by the cache servers 16, in order to
control the choice of which document to cache and in which
cache server. The cache server 16 at each node keeps
track of how many references to particular documents are

coming in from where and knows an aggregate request amount.

10

15

20

25

30

WO 98/53410) PCT/US98/09943

-38-

This data can be collected at a central location, and
arranged by groups of cache servers 16, such as by groups
of cache servers 16 that are located in a particular
network region. By collecting data in this fashion, it is
then possible for the publisher of a document to not only
obtain statistics about the "hit rate" on their material by
specific clients, but also in which sub-portion of the
network 10 the hits are coming from.

The invention also enables a type of accelerated
distribution of documents into the network 10 in
anticipation of demand.

The cache servers 16 can also be used to host replicas
of databases, search index files, and other popular
documents by acting as load splitters from the service
provider perspective. In other words, database providers
can arrange to have their documents placed into the network
10, pushing out data closer to the clients 12 that desire
access to it, wherever these placements might be.

The cache servers may also implement authentication of
the sources of request messages and other information.

This can be done because the cache servers 16 automatically
maintain information as to the client 12 which was the
source of a particular document request message. If the
client 12 is not among the authorized requesters for the
document, the request message can be terminated at the
cache gserver 16 before it even reaches the home server 20.

Selective security can also be provided for as well.
The mechanism arises from the fact that the nodes each have
a filter 26, a resource manager 24, a cache repository 18,
and an HTTP proxy 22. The filter 26 may be used not only
to keep track of how to redirect requests for cache copies
to the HTTP proxy 22, but may also restrict access to the

cache copies, such as by authenticating the request for the

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-39~

information. As long as the first and last hop along the
path from the client 12 to the server 20 are trusted, since
the links between the caches servers 16 can easily be
arranged to be trusted links, a secure link can be provided
between the clients 12 and the home server 20 via the cache
servers 16.

More generically, the cache servers 16 may transform
documents at several points during their distribution by
the home server 20 and subsequent delivery to clients 12.
Such transformations may enable and/or implement several
features that add value to caching a document or program,
including such features as compression or encryption of
documents and/or programs. Furthermore, any known security
techniques can be applied as transformations at the source,
destination or both (in the case of a transaction). In
addition to encryption and decryption, these include
authentication, authorization (access control), non-
repudiation, and integrity control. These security
techniques can use cryptographic technigues that usually
require a key, and optionally use the physical path to a
cache server to strengthen authentication, authorization,
and non-repudiation.

In typical applications, these transformations will be
matched (e.g., for every encryption there should be a
matching decryption) and used individually. However, they
may also be composed at different points in the lifetime of
a document. For example, a document may be compressed,
encrypted, decrypted, and decompressed, all at different
points.

FIG. 10 illustrates one possible approach for applying
transformations to documents. In this example, distinct

transformations may occur at four different times as a

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-40-

document is distributed by the home server 20 and delivered
to the client 12:

at time Tl1, as the request is made by the client 12

at time T2, as the reguest is forwarded to server 20
at time T3, as the reply is sent by the server 20

at time T4, as the reply is forwarded to the client 12

Note that even though the transformations in FIG. 10
are associated with four phases of communication, in
reality, transformations are performed by the nodes
themselves. Thus, Tl may be performed on the request by
cache server 16-6 after it is received, or by client 12
before it is sent. In the former case, cache server 16-6 is
performing the transformation. In the later case, the
client 12 is performing the transformation, and merely
tunneling this through cache server 16-6. Likewise, as the
request is forwarded to the home server 20 the
transformation T2 is performed by cache server 16-7 or home
server 20. The same alternatives apply for T3 and T4, as
the reply is sent from home server 20 and ultimately
forwarded to client 12,

Where the transformations as performed in FIG. 10 have
an important role is in key placement for security (or any
other transformations which requires input other than the
document). If the cache servers 16 themselves are
implementing security, cryptographic keys must be
distributed to the cache servers 16, as needed. In this
case, end-to-end security can be provided by adding a secure
channel between client 12 and cache server 16-6 as well as
between cache server 16-7 and server home 20. If the client
12 and home server 20 implement their own end-to-end

security the cache servers 16 do not hinder, and possibly

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-41 -

cooperate in, distributing keys to the client 12 and home
server 20. '

FIG. 10 shows the cache sexrvers 16-6 and 16-7 at the
edges of the network, whereby there is a direct path between
client 12 and cache server 16-6 as well as between cache
server 16-7 and home server 20. However, the design as
described does not preclude a more general configuration,
when transformations are performed by intermediate cache
servers 16-9 and 16-10. In other words, in FIG. 10 a
transformation may be made at an intermediate cache server
16-9, 16-10 during the request, or reply, or both.

The scheme also allows for a form of transparent
document compression, which is another form of conserving
bandwidth, as long as a particular home server 20 and client
12 are committed to communicating by using cache servers 16.
In particular, after the first hop along the path between
the client 12 and the server 20, the first leaf node server
16-6 can implement compression or encryption in a manner
which is transparent to both the client 12 and the home
server 20.

Documenteg can also be virus-scanned or code-certified
prior to being forwarded.

The invention also permits the efficient caching of
dynamic content documents, where the end result of which
data is actually returned to the client changes on the fly.
Such documents may include, for example, documents having
embedded Java code.

The cache servers 16 can accomplish efficient
distribution of such dynamic content documents by caching
not only the data for the document, but by also caching the
programs that specify how the document is to be displayed
when the data is retrieved. If the programs are of the type

that are normally executed at the client 12 at the time of

10

15

20

WO 98/53410 PCT/US98/09943

42—

display of the documents, then the programs and the data are
simply transferred to the client 12.

If, however, the programs are of the type which the
client 12 expects will be running on the home server 20, the
cache server 16 performs an additional level of home server
spoofing by alsoc running the programs. In this instance, it
may be necessary for the cache server 16 to maintain an
interactive session state with the client 12 in order to
complete the spoofing of the home server 20.

The invention also inherently improves the delivery of
stored media such as audio and video data files since number
of hops between a home server 20 and a client 12 are
reduced.

While we have shown and described several embodiments
in accordance with the present invention, it is to be
understood that the invention is not limited thereto, but is
susceptible to numerous changes and modifications as known
to a person skilled in the art and we therefore do not wish
to be limited to the details shown and described herein but
intend to cover all such changes and modifications as are

obvious to one of ordinary skill in the art.

10

15

20

25

30

WO 98/53410 PCT/US98/09943

_43..
CLAIMS
What is claimed is:
1. In a system containing a plurality of computers which

communicate over a network using communication protocols,
with the computers at certain nodes in the network acting as
home servers, or simply, servers, for storing information in
the form of documents, and with certain other computers
acting as clients that send document request messages to the
servers at an application layer, the document requests
message being requests for documents stored at the servers,
a method of fulfilling document reqguest messages comprising
the steps of:

(a) storing local cache copies of documents at a
plurality of intermediate node locations in the network; and
(b) in response to a particular one of the clients
generating a particular application layer document request

message intended to be sent to a particular one of the
servers, fulfilling the particular application layer
document request message at one of the intermediate node
locations by, at a selected communication layer lower than
the application layer, intercepting the document request
message and returning one of the local cache copies to the
application layer at the client, such that the application
layer request message is intercepted by the lower layer at
the intermediate node and such that the application layer on
the server does not receive application layer document

request message.

2. A method as in claim 1 additionally comprising the step

of, at selected intermediate nodes:

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-44-

(c¢) if a particular document request message cannot be
fulfilled by providing one of the local cache copies,

routing the document request message to another node.

3. A method as in claim 1 wherein the step of fulfilling
the particular document request additionally comprises, in
at least one intermediate node, wherein the intermediate
node is neither a client nor a server, the step of:

(c) storing local cache copies of particular documents
which are also stored on other intermediate nodes;

(d) determining the identity of a neighboring
intermediate node that stores local cache copies; and

(e) allocating the fulfillment of document request
messages among the intermediate node and the neighboring
intermediate node based upon the availability of document
request message load fulfillment resources at the

intermediate node

4. A method as in claim 3 wherein the message locad

fulfillment resources include the caches.

5. A method as in claim 3 wherein the message load

fulfillment resources include communication path load.

6. A method as in claim 3 in which the step of allocating
the fulfillment of document request messages additionally
comprises the step of:

(f) exchanging status messages between the intermediate
node and the neighboring node, the status messages including
information selected from at least one of processing load,
communication path load, document size, document regquest

message response time, document request message request

10

15

20

25

30

WO 98/53410 PCT/US98/09943

45~

rate, document request message rate of change, or home

server operability.

7. A method as in claim 1 wherein the step of fulfilling
the particular document request additionally performs
communication path load distribution between paths that
interconnect the nodes, by further comprising the steps of:

(c¢) storing local cache copies of particular documents
which are also stored on other nodes;

(d) determining the identity of a neighboring node that
stores local cache copies; and

(e) allocating the fulfillment of document reguest
messages among the intermediate node and the neighboring

intermediate node based upon the communication path load.

8. A method as in claim 2 additionally comprising the steps
of, at selected intermediate nodes:

(d) determining an identity of a first neighboring node
from which a particular document request message is
received; and

(e) determining an identity of a second neighboring
node to which a particular document request message is
routed on the path to the home server if the particular
document request message cannot be fulfilled by returning

the local cache copy to the client.

9. A method as in claim 8 wherein the step of storing local
cache copies further comprises the step of:

(f) determining a node state parameter at the first
neighboring node and a node state parameter at the local
node, and when the first neighboring node and local node
state parameters are different by a predetermined amount

from one another, forwarding a copy of at least one of the

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-46-~

local cache copies to the first neighboring node for storing
at the first neighboring node location.

10. A method as in claim 9 wherein the node state
parameters are selected from the group consisting of rate of
request fulfillment, change in rate of request fulfillment,
document size, document fetch response time, communication
path load, cache server load, or home server operational

status.

11. A method as in claim 8 wherein the step of storing
local cache copies further comprises the step of:

(f) determining a node state parameter at the second
neighboring node and a node state parameter at a local node,
and when the node state parameters at the second neighboring
node and local node differ by a predetermined amount,

deleting at least one of the local cache copies.

12. A method as in claim 11 wherein the node state
parameters are selected from the group consisting of rate of
request fulfillment, change in rate of reguest fulfillment,
document size, document fetch response time, communication
path load, cache server load, or home server operational

status.

13. A method as in claim 8 wherein the step of storing
local cache copies further comprises the step of:

(£) determining a node state parameter at the second
neighboring node and a node state parameter at a local node,
and when the node state parameters at the second neighboring
node and local node different by a predetermined amount, in

the step of filtering, reducing a proportion of the document

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-4~

requests that are fulfilled by providing local cache copies
to the client. '

14. A method as in claim 1 wherein the step of filtering
additionally comprises the step of:

(c) returning the local cache copy to the client if a
local node state parameter differs from a predetermined

amount.

15. A method as in claim 1 additionally comprising the step
of, at the selected intermediate nodes:

(¢) recording load statistics as to the number of
request messages fulfilled by providing one of the local

cache copies to the client.

16. A method as in claim 1 additionally comprising the step
of, at the selected intermediate nodes:

(¢) recording request message statistics as to the
number of request messages received and fulfilled for a

particular document.

17. A method as in claim 1 additionally comprising the step
of, at the selected intermediate nodes:

(¢) recording response time statistics as to the number
of request messages received for documents stored at a

particular server.

18. A method as in claim 1 wherein document request
messages are received at the intermediate nodes on a
plurality of communication paths, and the method

additionally comprises the step of, at the selected

intermediate nodes:

10

15

20

25

30

WO 98/53410 PCT/US98/09943

~48-

(¢) recording request message statistics to track which
document request messages are received from a particular
path.

19. A method as in claim 1 wherein document request
messages are receilved at the intermediate nodes on a
plurality of communication paths, and the method
additionally forecasts communication path usage by criteria
selected from one of overall network demand, network

regional demand, or by specific client demand.

20. A method as in claim 1 wherein the step of filtering
document request messages additionally comprises the step
of:

(c) authenticating a node over which a document request
message arrives from a client, prior to forwarding the

document request message.

21. A method as in claim 1 wherein the step of filtering
document request messages additionally comprises the step
of:

(c¢) authenticating a node from which the cached
document originated prior to returning the local cache copy

to the client.

22. A method as in claim 1 wherein the servers also store
programs for operating on the documents, and step (b)
additionally comprises the step of, at the intermediate
node:

(¢) storing local cache copies of selected programs as
certain selected programs related to requested document

copies are obtained from the servers.

10

15

20

25

30

WO 98/53410 PCT/US98/09943

—49-

23. A method as in claim 22 additionally comprising the
step of: '
(d) executing the local cache copies of selected

programs at the intermediate nodes upon demand from the

client.
24. A method as in claim 22 additionally comprising the
step of:

(d) maintaining an interactive session between the

intermediate node and the client such that the intermediate
node acts as the server would act in the event that the

server had fulfilled the document request message.

25. A method as in claim 1 wherein the step of filtering
document request message additionally comprising the step
of:

(c) applying selected programs to the local cache
copies to obtain results, prior to returning the results of

applying the programs to the client.

26. A method as in claim 1 wherein the documents are
selected from the group of multimedia documents, programs,

data bases, compressed data, or encrypted data.

27. A method as in claim 8 wherein multiple intermediate
nodes are located between the server and the client, and
wherein a particular document is pushed into the network by
routing it to a plurality of nodes depending upon an

expected rate of demand upon the document.

28. A method as in claim 9 wherein the predetermined rate
of request fulfillment depends upon document attributes

selected from the group of expected rate of request

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-50-~

fulfillment, expected change in rate of request fulfillment,
document size, expected document fetch response time,
expected communication path load, or expected cache server
load.

29. A method as in claim 1 additionally comprising the step
of, at the intermediate nodes,

(¢) storing, with the local cache copies, data
indicating a condition as to the release of the local cache
copies; and

(d) returning the local cache copy to the client only

when the condition is satisfied.

30. A method as in claim 29 wherein the condition is a time

of release of the document.

31. A method as in claim 1 wherein the step of storing
cache copies is selectively executed based upon

predetermined conditional criteria.

32. A method as in claim 31 wherein the predetermined

conditional criteria include time of day.

33. A method as in claim 31 wherein the predetermined
conditional criteria is at least one selected from the group
of document size, desired document request message response
time, document request message rate, rate of change of the
document regquest message rate, server load, communication

path load, or home server operational status.

34. A method as in claim 1 wherein the step of storing

cache copies additionally comprises the step of storing a

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-51-

partial copy of a document which is larger than a

predetermined size.

35. A method as in claim 1 additionally comprising the step
of:
(c¢) deleting cache copies of documents selectively

executed based upon predetermined conditional criteria.

36. A method as in claim 35 wherein the predetermined

conditional criteria include time of day.

37. A method as in claim 35 wherein the predetermined
conditional criteria is at least one selected from the group
of document size, desired document request message response
time, document reguest message rate, rate of change of the
document regquest message rate, server load, or communication

path load.

38. A method as in claim 1 wherein the step of storing
cache copies additionally comprises the step of storing a
partial copy of a document which is larger than a

predetermined size.

39. A method of providing a logical communication network
for operation in a network of computers in which computers
are interconnected by a plurality of paths at a plurality of
nodes, the logical communication network permitting a first
computer at a first network node to communicate securely
with a second computer located at a second network node, the
method comprising the steps of:

(a) providing a secure communication path along the
path between the first node and a first intermediate node

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-52-

which is a first hop in a communication path between the
first node and the second node;

(b) providing a secure communication path between the
second node and a last intermediate node which is a last hop
in the path between the first and second nodes; and

(c¢) providing a cryptographic key to the first and last
intermediate nodes, and the first intermediate node using
the key to encrypt information before forwarding it to
another intermediate node in the path, and the last
intermediate node using the key to decrypt the information
before forwarding it to the second intermediate node, such
that a secure communication path is provided between the

first and last intermediate nodes.

40. A method of providing a communication network for
operation in a network of computers in which computers are
interconnected by a plurality of paths at a plurality of
nodes, the communication network permitting a first computer
at a first network node to communicate with a second
computer located at a second network node, the method
comprising the steps of:

(a) providing a communication path along the path
petween the first node and a first intermediate node which
is a first hop in a communication path between the first
node and the second node, the communication path comprising
a plurality of paths;

(b) providing a communication path along the between
the second node and a last intermediate node which is a last
hop in the path between the first and second nodes; and

(¢) providing a compression and decompression function
to the first and last intermediate nodes, and the first
intermediate node using the compression function to compress

information before forwarding it to another intermediate

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-53-

node in the path, and the last intermediate node using the
decompression function to decompress the information before
forwarding it to the second intermediate node, such that a
reduced bandwidth communication path is provided between the

first and second intermediate nodes.

41. A method as in claim 1 additionally comprising the
steps of, to maintain cache consistency:

(¢) at the server, attaching a document expiration time
stamp to the document;

(d) at an intermediate node, examining the time stamps
attached to a cached document to determine if the document
has expired; and

(e) if the cached document has expired, either deleting

or refreshing it.

42. A method as in claim 1 additionally comprising the
steps of:

(c) at the server, attaching a document modification
time stamp to the document; and

(d) at an intermediate node, estimating the
modification rate of the document, and if the document
modification rate is greater than the request rate by a
predetermined amount, deleting the cache copy, and if the
modification rate is less than the request rate by a

predetermined amount, requesting an updated cache copy.

43. In a system containing a plurality of computers which
communicate over a network using a layered communication
protocol, with the computers at certain nodes in the network
acting as servers for storing information in the form of
documents, and with certain other computers acting as

clients that send document request messages to the servers

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-54-

at an application layer level, the document request messages
being requests for documents stored at the servers, a method
of fulfilling document request messages by transparent
proxying comprising the steps of:

(a) storing local cache copies of documents at a
plurality of intermediate node locations in the network; and
(b) in response to a particular one of the clients

generating a particular application layer document request
message intended to be sent to a particular one of the
gservers, fulfilling the particular application layer
document request message at one of the intermediate node
locations by intercepting the document request message and
returning one of the local cache copies to the application
layer at the client, such that the application layer request
message is intercepted at the intermediate node and such
that a network connection is not established with the

application layer on the server.

44. A method as in claim 43 wherein an intermediate node
comprises a cache server and a router, additionally
comprising the steps of, at the router:

(c¢) recognizing document request messages that are to
be intercepted, and extracting such messages for processing

by the cache server.

45. A method as in claim 1 additionally comprising the
steps of:

(¢) simultaneously pre-fetching related documents
together, wherein related documents are those documents that

are most frequently requested in close succession.

46. A method as in claim 1 additionally comprising the
steps of:

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-55-

at the client,

(c) generating a connection request message which
reguests a communication path to be established between the
client and a server; and

at an intermediate node,

(d) upon receiving a connection request message
from the client, waiting for the receipt of a document
request message, and forwarding the connection request
message and the document request message to a next

intermediate node in the path together.

47. A method as in claim 46 additionally comprising the
gsteps of:
at an intermediate node which caches the document
indicated by the regquest message,
(e) acknowledging the connection request to the

client, and returning the requested document to the client.

48. A method as in claim 1 additionally comprising the step
of:

(c¢) operating a cache server which selects documents to
store in a local cache and documents to remove from the
local cache, such that the cache server selects a most often
requested document to replicate at a neighboring cache
server located at a node in the path, and chooses the least

often requested documents to drop from its own memory.

49. A method as in claim 1 wherein each intermediate node
includes a resource manager associated with it, and the
regsource server performs the steps of:

(c) allocating the use of communication buffers to
buffer incoming and outgoing messages so as to favor message

traffic that is designated as more important.

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-56 -

50. A method as in claim 49 comprising the steps of:

{d) allocating the use of the communication buffers and
communication path bandwidth based upon content attributes
selected from the set of document size, document type,

direction of transmission, or priority.

51. A method as in claim 1 additionally comprising the
steps of, at the intermediate nodes,

(¢) comparing a node state parameter at the
intermediate node with a node state parameter at a
neighboring server; and

(d) if the node state parameters at the neighboring
server and the intermediate node differ by a predetermined
amount for more than a predetermined period of time, at the
intermediate node, inferring that the neighboring node does
not cache one or more documents being requested by the

intermediate node.

52. A method as in claim 51 wherein the node state
parameters are selected from the group consisting of rate of
request fulfillment, change in rate of request fulfillment,
document size, document fetch response time, communication

path load, home server operability, or cache server load.

53. 1In a system containing a plurality of computers which
communicate over a network, with the computers at certain
nodes in the network acting as home servers for storing
information in the form of documents, and with certain other
computers acting as clients that send document request
messages which are requests for documents stored at the
servers, a method of coordinating the fulfilment of document

request messages to distribute load compriging the steps of:

WO 98/53410 PCT/US98/09943

-57-

(a) storing local cache copies of documents at a

plurality of intermediate node locations in the network;

and, in response to a particular one of the clients
generating a particular document request message intended to
be sent to a particular one of the servers,

(b) fulfilling the particular document request message
at one of the plurality of intermediate node locations by
returning one of the local cache copies corresponding to a
document specified in the particular document request
message, such that an application layer in the intermediate
node location intercepts the request so that an application
layer on the server does not receive the document request

message.

54. A method as in claim 53 additionally comprising the
step of:

(¢) at the intermediate node locations, coordinating
the step of storing cache copies and splitting document
fulfillment among the intermediate node locations to
distribute document request load on the intermediate node

cache servers or home server.

55. A method as in claim 53 additionally comprising the
step of:

(c) at the intermediate node locations, coordinating
the step of storing cache copies and splitting document
fulfillment among the intermediate node locations to

distribute communication path load.

56. A method as in claim 53 wherein the step of
coordinating the step of storing cache copies among the
intermediate node locations to reduce document load

comprises the steps of:

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-58 -

(c) at neighboring node locations, replicating

documents.

57. A method as in claim 53 wherein the step of storing
copies of documents at intermediate node locations
additionally comprises the step of:

(c¢) alternatively making such copies available or not
available for fulfilling document regquests based upon

predetermined criteria.

58. A method as in claim 57 wherein the predetermined

criteria is time of day.

59. A method as in claim 53 wherein the step of fulfilling
the particular document reguest message at one of the
intermediate servers additionally comprises the steps of:

(c) opening a communication connection between a leaf
node and the server, the leaf node being one of the
intermediate node locations that initially receives the
document request message from the client; and

(d) forwarding the document request and the
communication connection to another intermediate node that

is located closer to the server in the network than the leaf

node.

60. A method as in claim 53 wherein the step of fulfilling
the particular document regquest message at one of the
intermediate servers additionally comprises the steps of:
(c¢) opening a communication connection between a leaf
node and the server, the leaf node being one of the
intermediate node locations that initially receives the

document request message from the client; and

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-59-

(d) relaying the document reguest to another
intermediate node that is located closer to the server in
the network than the leaf node.

61. A method as in claim 53 wherein the cache servers
additionally perform the steps of:
(c) acting as a communication proxy for the home server

from the perspective of the client.

62. A method as in claim 53 wherein the step of fulfilling
document request messages additionally controls access to
documents, and the method additionally comprises the step
of:

(¢) filtering document regquest messages based upon a
Uniform Resource Locator (URL) field in the document request

message.

63. A method as in claim 53 wherein the step of fulfilling
document request messages additionally controls access to
documents, and the method additionally comprises the step
of:

(¢) filtering document regquest messages based upon an

authentication field in the document request message.

64. A method as in claim 53 wherein the step of returning
the cache copy of the document to the client additionally
comprises the step of:

(c¢) virus scanning the document.

65. A method as in claim 53 wherein the step of returning
the cache copy of the document to the client additionally
comprises the step of:

(¢c) code certifying the document.

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-60-

66. A method as in claim 53 wherein the step of returning
the cache copy of the document to the client additionally
comprises the step of:

(¢) decoding the document.

67. A method as in claim 53 wherein the step of returning
the cache copy of the document to the client additionally
comprises the step of:)

(¢) controlling access to the cache copy of the
document based upon client authentication and home server

request.

68. A method of fulfilling requests for information in a
network of computers, with at least some of the computers in
the network acting as home servers for storing information,
and at least some of the computers acting as clients that
send request messages to the home servers, the method
comprising the steps of:

(a) distributing cache copies of the information
through the network by storing copies of the information in
a plurality of computers in the network that act as cache
servers;

(b) routing request messages from the client to the
server through a plurality of intermediate computers in the
network, with at least some of the intermediate computers
also acting as cache servers, the request messages initiated
by a particular one of the clients to obtain information
from a particular one of the servers; and

(¢) transparently processing request messages as they
are routed through the cache servers, such that request
messages that can serviced by the cache servers instead of

the home servers are serviced by the cache servers, in a

10

15

20

25

30

WO 98/53410 PCT/US98/09943

-61-

manner which is transparent to the clients and the home

servers.

69. A method as in claim 59 additionally comprising the
step of:

(d) automatically moving cache copies among the cache
servers in the network in response to predetermined criteria
concerning the servicing of the request messages by the

cache sexvers.

70. A method as in claim 1 wherein the multimedia documents
contain digitized information selected from the group of

text, graphics, audio, video, programs, or other data.

71. A method as in claim 1 wherein the network comprises a

wireless network.

22. A method as in claim 1 wherein the intermediate nodes
also perform the step of:
determining if a particular communication entity has

failed, and if so, notifying another network entity.

73. A method as in claim 72 wheren the communication entity
is one of a router, communication path, or communication

path.

74. A method as in claim 72 wherein the other network
entity is one of another intermediate node, a network

administrator, or other networked computer system.

75. A method as in claim 57 wherein the predetermined

criteria is a notification by the client.

10

15

WO 98/53410 PCT/US98/09943

-62-

76. A method as in claim 57 wherein the predetermined

criteria is a notification by the home server.

77. A method as in claim 2 additionally comprising the steps
cf, at selected intermediate nodes:

(d) determining an identity of a first neighboring node
from which a particular document request message is
received; and

(e) determining an identity of a second neighboring
node to which a particular document regquest message is
routed on the path to the home server;

() if the particular document request message cannot
be fulfilled satisfactorily by the intermediate node because
of failed or slow processing at the intermediate node,

altering the path to bypass the intermediate node.

PCT/US98/09943

WO 98/53410

1/10

1

................. N e T
............................. 4 [= /__\
HU_ —
__ | ez .
v-ei Jual el
JueyI0) . eI
no; _ : NS
8% 8-bl »\\ N \ m
AN / ¢-¢l |
: =] Jewnod =R Jounoy |, =|_ B
/ 94— Jojnox = I-vl 9k
. —] ~9-9i 2-1-81 _‘__.m_%
A 19AIBS BIN0Y | g-p 9-8 2-p1—] Aol X JanJeg m
9YoDo ayoD? E
mm/ // NOLSE]S o
. 2yoD) W
@-m_/l. m 19}N0Y \¢ irdl 2
@/@ O_!w_,/ _ O:V_ @m
A JonIDS — e —
ayon) . = _m%.:om ¢-pl—] 481N0Y . [—] /m-w_
mm\
\ A Jo9S - = X JONIAS
Ol HoRO Jontas suoy 170 oy

I-1¢

WO 98/53410

PCT/US98/09943

2/10

|18
Resource
Manager httpd Proxy User space
26
.
II \\
| 1
| |
by TCP
| g } Kernel
\\ W {P
\\ [
! 1‘
_=
28
L C
Route Snooper Route Router
Net Net)
L=

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 98/53410 PCT/US98/09943

3/10

Client Home Server

=Y
ence NUM
sYN (SGC\AUCMN\) Connection establishment
A

Request/Reply

CK (
y+1)
GET(U/?L) Connection termination

FIG. 3 (Prior Art)

SUBSTITUTE SHEET (RULE 28)

WO 98/53410
4/10

SYN

l

PCT/US98/09943

a) establish TCP connection
(spoof home server)

b) note x,y, IP home server
c) intercept GET request

| — 41

 GET(URL)

query

filter (URL)

44

guery MISS

load balancer

d) forward SYN+GET

e) close server half of TCP
connection (spoof client)

d) issue GET(URL)to load
balancer

e) load balancer sends reply

f) close TCP connection
with client (spoof home)

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 98/53410

5/10

SYN + GET

l

PCT/US98/09943

a) intercept SYN+GET
b) note x,y, home P

|51

query

MISS

filter (URL)

54

Y

query
load balancer

c) forward SYN+GET

HIT

c) establish server half of TCP
connection (spoof client)

d) issue GET(URL) to load
balancer

e) load balancer sends reply

f) close TCP connection
with client (spoof home)

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 98/53410 PCT/US98/09943

6/10

8l ' 62

parent is e forward SYN+GET

home server

|

|

|

|

|

|

|

I{ connection (spoof client) | -63
| | o issue PROXY GET(URL) to
:l load balancer

1

:

|

|

|

|

[

¢ load balancer issues an
HTTP GET to home server
¢ |load balancer sends reply

e close TCP connection with
client (spoof home)

]
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
o establish server half of TCP |
1
|
{
l
I
|
I

SUBSTITUTE SHEET (RULE 26)

PCT/US98/09943

WO 98/53410

7/10

@I»

1ON12G QWOH

L

914

» Aldey (2
ﬁ\ (8N) L39 (I
Jainoy 48}n0Y 19100y
29| qol 0 DYl
N\ \ \
— A —
® —1 [] — [] | —
9 18AJ8s g JanJas LSS
J91noy 4894n0Y Jainoy Jo}noy
 e— | —3
ASI—® — X91—1e —
A JBAIDS X JOAJaS

SUBSTITUTE SHEET (RULE 26)

PCT/US98/09943

WO 98/53410

8/10

o4

A\

S

—/
'Y —

(1)
19118S BUWIOH

8 Ol4

o9l \\ 82 9l 82 ;M
\ \ T ey
—oi Err i T
® 0 0@ - o0 = _
1394NAS EEIIE L39+NAS T 139 =
mm\ 19}N0Y gz 400y I
g = juaJnd v = plIyo g = jusJnd e ©
X = oWoy X = 8Woy X = 9UI0Y .
|aU1a |oUIoY

74

Axoad pdiiy J20uD|Dg pDOT

be
(1) JoAI9S

“Axoud pdiy 180UD|DQ pDOT

e
U PELSLELS

¢¢

SUBSTITUTE SHEET (RULE 26)

WO 98/53410

9/10

PCT/US98/09943

a
b

D

cached doc.
req. rate

spont. rates

SUBSTITUTE SHEET (RULE 26)

PCT/US98/09943

WO 98/53410

10/10

om/

Ol 914

yJOM}ON

19488
84oDn)

AONIBS
oWIOH

\N_

£|dey Ayday

¢l val
— -
. "«'I

2L JonIes 1L ualo
1sanbay aypd e, 69l ,* 2yop) Jsenbay
. .
ayoD)

SUBSTITUTE SHEET (RULE 26)

	2009-01-30 Foreign Reference

